
Semantics of Advanced Data Types

Patricia Johann

Appalachian State University

June 14, 2021

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Why Study Semantics of Advanced Data Types?

• A language’s type system allows us to express correctness properties of its
programs. (“Well-typed programs don’t go wrong.”)

• Data types are an important part of any type system.

• Fancier data types let us express more sophisticated correctness properties.

• Type-checking provides guarantees of correctness with respect to these properties.

• In this course:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

• We ask (and answer!)

- What correctness properties can each class of data types express?

- What models can we build to understand each class of data types?

- What do properties of these models say about how we can compute with,

and reason about, programs involving each class of data types?

Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs

Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs

Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs

Course Outline

Lecture 1: Syntax and semantics of ADTs and nested types

Lecture 2: Syntax and semantics of GADTs

Lecture 3: Parametricity for ADTs and nested types

Lecture 4: Parametricity for GADTs

Lecture 1:
Syntax and Semantics of ADTs and Nested Types

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by

Assumption: Basic familiarity with categories, functors, natural transformations.

Syntax of ADTs (I)

• Booleans
data Bool : Set where

false : Bool
true : Bool

• Natural numbers
data Nat : Set where

zero : Nat
suc : Nat→ Nat

• Lists
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

• Binary trees

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

Syntax of ADTs (I)

• Booleans
data Bool : Set where

false : Bool
true : Bool

• Natural numbers
data Nat : Set where

zero : Nat
suc : Nat→ Nat

• Lists
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

• Binary trees

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

Syntax of ADTs (I)

• Booleans
data Bool : Set where

false : Bool
true : Bool

• Natural numbers
data Nat : Set where

zero : Nat
suc : Nat→ Nat

• Lists
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

• Binary trees

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

Syntax of ADTs (I)

• Booleans
data Bool : Set where

false : Bool
true : Bool

• Natural numbers
data Nat : Set where

zero : Nat
suc : Nat→ Nat

• Lists
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

• Binary trees

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.

Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.

Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.

Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.

Syntax of ADTs (II)

• The only instance of the data type being defined that appears in the type of a
constructor for that data type is the same one being defined

• So an ADT defines a family of inductive types, one for each choice of parameters.

• The general form of an ADT is

data D A1 ...An : Set where

c1 : T11 → ...→ T1j1 → D A1 ...An

...
ck : Tk1 → ...→ Tkjk → D A1 ...An

• Agda also imposes a strict positivity requirement on the types of c1,...,ck: Either

- Tij is not inductive and does not mention D

or

- Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An

where D does not occur in any Ci.

• Strict positivity

=⇒ no negative occurrences of D in the argument types of its constructors

=⇒ D can be interpreted as the least fixpoint of a functor.

Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y).

• We will restrict attention to the category Set for now.

Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y).

• We will restrict attention to the category Set for now.

Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y).

• We will restrict attention to the category Set for now.

Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y).

• We will restrict attention to the category Set for now.

Category Theory Interlude (I)

• A category C comprises

- a class ob(C) of objects

- for each X,Y ∈ ob(C), a class HomC(X,Y) of morphisms from X to Y

- for each X ∈ ob(C), an identity morphism idX ∈ HomC(X,X)

- a composition operator ◦ assigning to each pair of morphisms f : X → Y and
g : Y → Z, the composite morphism g ◦ f : X → Z

• The identity morphisms are expected to behave like identities: if f : X → Y then
f ◦ idX = f = idY ◦ f .

• Composition is associative.

• We write X : C rather than X ∈ ob(C) and f : X → Y rather than
f ∈ HomC(X,Y).

• We will restrict attention to the category Set for now.

Category Theory Interlude (II)

• If C and D are categories, then a functor F : C → D comprises

- a function F from ob(C) to ob(D), together with

- a function mapF from HomC(X,Y) to HomD(FX,FY)

• A functor must preserve the fundamental structure of a category. This means that
mapF must preserve identities and composition:

mapF g ◦ mapF f = mapF (g ◦ f)
mapF idX = idFX

Category Theory Interlude (II)

• If C and D are categories, then a functor F : C → D comprises

- a function F from ob(C) to ob(D), together with

- a function mapF from HomC(X,Y) to HomD(FX,FY)

• A functor must preserve the fundamental structure of a category. This means that
mapF must preserve identities and composition:

mapF g ◦ mapF f = mapF (g ◦ f)
mapF idX = idFX

Functorial Semantics for ADTs: Overview

• Each ADT has an underlying functor F because of strict positivity.

• Kelly’s Transfinite Construction of Free Algebras (TFCA) constructs free (i.e.,
initial) algebras for these functors.

• The carrier of the initial algebra for a functor F is its least fixpoint µF .

• If the ADT D is defined by D = F D, where F denotes the underlying functor F for
D, then we interpret D as µF .

Functorial Semantics for ADTs: Overview

• Each ADT has an underlying functor F because of strict positivity.

• Kelly’s Transfinite Construction of Free Algebras (TFCA) constructs free (i.e.,
initial) algebras for these functors.

• The carrier of the initial algebra for a functor F is its least fixpoint µF .

• If the ADT D is defined by D = F D, where F denotes the underlying functor F for
D, then we interpret D as µF .

Functorial Semantics for ADTs: Overview

• Each ADT has an underlying functor F because of strict positivity.

• Kelly’s Transfinite Construction of Free Algebras (TFCA) constructs free (i.e.,
initial) algebras for these functors.

• The carrier of the initial algebra for a functor F is its least fixpoint µF .

• If the ADT D is defined by D = F D, where F denotes the underlying functor F for
D, then we interpret D as µF .

Functorial Semantics for ADTs: Overview

• Each ADT has an underlying functor F because of strict positivity.

• Kelly’s Transfinite Construction of Free Algebras (TFCA) constructs free (i.e.,
initial) algebras for these functors.

• The carrier of the initial algebra for a functor F is its least fixpoint µF .

• If the ADT D is defined by D = F D, where F denotes the underlying functor F for
D, then we interpret D as µF .

Transfinite Construction of Free Algebras (Kelly’80)

• If

C is a locally λ-presentable category interpreting types,

0 is the initial object of C,

and

F : C → C is a λ-cocontinuous functor

then F has an initial algebra, and its carrier is the least fixpoint µF of F
computed by

0 ↪→ F 0 ↪→ F (F 0)... ↪→ Fn 0... ↪→ µF

• I will be deliberately vague about the requirements needed on the category
interpreting types and the functors underlying data types.

• For concreteness, take C to be Set and F to be polynomial.

Transfinite Construction of Free Algebras (Kelly’80)

• If

C is a locally λ-presentable category interpreting types,

0 is the initial object of C,

and

F : C → C is a λ-cocontinuous functor

then F has an initial algebra, and its carrier is the least fixpoint µF of F
computed by

0 ↪→ F 0 ↪→ F (F 0)... ↪→ Fn 0... ↪→ µF

• I will be deliberately vague about the requirements needed on the category
interpreting types and the functors underlying data types.

• For concreteness, take C to be Set and F to be polynomial.

Transfinite Construction of Free Algebras (Kelly’80)

• If

C is a locally λ-presentable category interpreting types,

0 is the initial object of C,

and

F : C → C is a λ-cocontinuous functor

then F has an initial algebra, and its carrier is the least fixpoint µF of F
computed by

0 ↪→ F 0 ↪→ F (F 0)... ↪→ Fn 0... ↪→ µF

• I will be deliberately vague about the requirements needed on the category
interpreting types and the functors underlying data types.

• For concreteness, take C to be Set and F to be polynomial.

Semantics of ADTs

•
data Bool : Set where

false : Bool
true : Bool

has F X = 1 + 1, so Bool is interpreted as µF , i.e., as µX. 1 + 1

•
data Nat : Set where

zero : Nat
suc : Nat→ Nat

has F X = 1 +X, so Nat is interpreted as µF , i.e., as µX. 1 +X

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

has F X = 1 +A×X, so List,A is interpreted as µF , i.e., as µX. 1 +A×X
•

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

has F X = A+X ×B ×X, so Tree A B is interpreted as µF , i.e., as
µX.A+X ×B ×X

Semantics of ADTs

•
data Bool : Set where

false : Bool
true : Bool

has F X = 1 + 1, so Bool is interpreted as µF , i.e., as µX. 1 + 1

•
data Nat : Set where

zero : Nat
suc : Nat→ Nat

has F X = 1 +X, so Nat is interpreted as µF , i.e., as µX. 1 +X

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

has F X = 1 +A×X, so List,A is interpreted as µF , i.e., as µX. 1 +A×X
•

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

has F X = A+X ×B ×X, so Tree A B is interpreted as µF , i.e., as
µX.A+X ×B ×X

Semantics of ADTs

•
data Bool : Set where

false : Bool
true : Bool

has F X = 1 + 1, so Bool is interpreted as µF , i.e., as µX. 1 + 1

•
data Nat : Set where

zero : Nat
suc : Nat→ Nat

has F X = 1 +X, so Nat is interpreted as µF , i.e., as µX. 1 +X

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

has F X = 1 +A×X, so List,A is interpreted as µF , i.e., as µX. 1 +A×X
•

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

has F X = A+X ×B ×X, so Tree A B is interpreted as µF , i.e., as
µX.A+X ×B ×X

Semantics of ADTs

•
data Bool : Set where

false : Bool
true : Bool

has F X = 1 + 1, so Bool is interpreted as µF , i.e., as µX. 1 + 1

•
data Nat : Set where

zero : Nat
suc : Nat→ Nat

has F X = 1 +X, so Nat is interpreted as µF , i.e., as µX. 1 +X

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

has F X = 1 +A×X, so List,A is interpreted as µF , i.e., as µX. 1 +A×X
•

data Tree (A : Set) (B : Set) : Set where
leaf : A→ Tree A B
node : Tree A B→ B→ Tree A B→ Tree A B

has F X = A+X ×B ×X, so Tree A B is interpreted as µF , i.e., as
µX.A+X ×B ×X

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (I)

Nested types encode stronger properties, leading to stronger correctness guarantees.

• Perfect trees

data PTree : Set→ Set where
pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

PTree A encodes the constraint that a datum is a list of elements of type A whose
length is a power of 2.

• Bushes
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

Bush A encodes the constraint that a datum is... a bush of elements of type A.

• Constructors can have input types involving instances of the data type being
defined other than the one being defined.

• For truly nested types like Bush A these instances can even involve themselves!

• The return type of every constructor is still the same (variable) instance of the
data type as the one being defined.

• A nested type defines an inductive family of types (not a family of inductive types).

Syntax of Nested Types (II)

• The general form of a nested type is

data D A1 ...An : B1 → ...→ Bm → Set where

c1 : ∀{A1 ...An B1 ...Bm} → T11 → ...→ T1j1 → D A1 ...An B1 ...Bm

...
ck : ∀{A1 ...An B1 ...Bm} → Tk1 → ...→ Tkjk → D A1 ...An B1 ...Bm

where either

Tij is not inductive and does not mention D

or

Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An V1 ...Vm

where D does not occur in any Ci or any Vi, and each Vi is functorial in B1, ...Bm

• Strict positivity

=⇒ no negative occurrences of D in argument types of constructors

=⇒ D can be interpreted as the least fixpoint of a functor

Syntax of Nested Types (II)

• The general form of a nested type is

data D A1 ...An : B1 → ...→ Bm → Set where

c1 : ∀{A1 ...An B1 ...Bm} → T11 → ...→ T1j1 → D A1 ...An B1 ...Bm

...
ck : ∀{A1 ...An B1 ...Bm} → Tk1 → ...→ Tkjk → D A1 ...An B1 ...Bm

where either

Tij is not inductive and does not mention D

or

Tij is inductive and has the form

C1 → ...→ Cp → D A1 ...An V1 ...Vm

where D does not occur in any Ci or any Vi, and each Vi is functorial in B1, ...Bm

• Strict positivity

=⇒ no negative occurrences of D in argument types of constructors

=⇒ D can be interpreted as the least fixpoint of a functor

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (III)

• Like ADTs, nested types can be interpreted as fixpoints of functors...

...but now the functors must be higher-order!

• If C and D are categories, then the collection of functors from C to D also form a
category. Its objects are functors from C to D and its morphisms are natural
transformations between such functors.

• A natural transformation η : F → G is a collection {ηX : F X → GX}X:C such
that if f : X → Y in C then ηY ◦mapF f = mapG f ◦ ηX

F X GX

F Y GY

ηX

mapF f mapG f

ηY

• The identity on F is the identity natural transformation idF from F to F .

• Composition of natural transformations is componentwise, i.e., if X : C then

(η ◦ µ)X = ηX ◦ µX

Semantics of Nested Types (IV)

• A higher-order functor H is a functor (on a functor category) so it has an action
on objects (functors) and on morphisms (natural transformations) of that category.

• If F : C → D is a functor, then HF is also a functor from C to D
- if X : C then HFX : D
- if f : X → Y in C then HFf : HFX → HFY in D.

- if η : F → G then mapH η : HF → HG

• mapH must preserve identities and composition (now for natural transformations).

• To give an initial algebra semantics for nested types we must compute fixpoints of
higher-order functors.

Semantics of Nested Types (IV)

• A higher-order functor H is a functor (on a functor category) so it has an action
on objects (functors) and on morphisms (natural transformations) of that category.

• If F : C → D is a functor, then HF is also a functor from C to D
- if X : C then HFX : D
- if f : X → Y in C then HFf : HFX → HFY in D.

- if η : F → G then mapH η : HF → HG

• mapH must preserve identities and composition (now for natural transformations).

• To give an initial algebra semantics for nested types we must compute fixpoints of
higher-order functors.

Semantics of Nested Types (IV)

• A higher-order functor H is a functor (on a functor category) so it has an action
on objects (functors) and on morphisms (natural transformations) of that category.

• If F : C → D is a functor, then HF is also a functor from C to D
- if X : C then HFX : D
- if f : X → Y in C then HFf : HFX → HFY in D.

- if η : F → G then mapH η : HF → HG

• mapH must preserve identities and composition (now for natural transformations).

• To give an initial algebra semantics for nested types we must compute fixpoints of
higher-order functors.

Semantics of Nested Types (IV)

• A higher-order functor H is a functor (on a functor category) so it has an action
on objects (functors) and on morphisms (natural transformations) of that category.

• If F : C → D is a functor, then HF is also a functor from C to D
- if X : C then HFX : D
- if f : X → Y in C then HFf : HFX → HFY in D.

- if η : F → G then mapH η : HF → HG

• mapH must preserve identities and composition (now for natural transformations).

• To give an initial algebra semantics for nested types we must compute fixpoints of
higher-order functors.

Semantics of Nested Types (V)

•
data PTree : Set→ Set where

pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

has H F X = X + F (X ×X), so PTree is interpreted as µH,
i.e., as µF. λX.X + F (X ×X)

•
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

has H F X = 1 +X × F (F X), so Bush is interpreted as µH,
i.e., as µF. λX. 1 +X × F (F X)

Semantics of Nested Types (V)

•
data PTree : Set→ Set where

pleaf : ∀{A : Set} → A→ PTree A
pnode : ∀{A : Set} → PTree(A× A)→ PTree A

has H F X = X + F (X ×X), so PTree is interpreted as µH,
i.e., as µF. λX.X + F (X ×X)

•
data Bush : Set→ Set where

bnil : ∀{A : Set} → Bush A
bnode : ∀{A : Set} → A→ Bush (Bush A)→ Bush A

has H F X = 1 +X × F (F X), so Bush is interpreted as µH,
i.e., as µF. λX. 1 +X × F (F X)

Higher-Order Functorial Semantics of ADTs

• ADTs are uniform in their type parameters, so they also define inductive families.

• That is, we can interpret ADTs as fixpoints of higher-order functors too.

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

is also
data List : Set→ Set where

[] : ∀{A : Set} → List A
:: : ∀{A : Set} → A→ List A→ List A

which has H F X = 1 +X × F X, so List is interpreted as µH,
i.e., as µF. λX. 1 +X × F X

Higher-Order Functorial Semantics of ADTs

• ADTs are uniform in their type parameters, so they also define inductive families.

• That is, we can interpret ADTs as fixpoints of higher-order functors too.

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

is also
data List : Set→ Set where

[] : ∀{A : Set} → List A
:: : ∀{A : Set} → A→ List A→ List A

which has H F X = 1 +X × F X, so List is interpreted as µH,
i.e., as µF. λX. 1 +X × F X

Higher-Order Functorial Semantics of ADTs

• ADTs are uniform in their type parameters, so they also define inductive families.

• That is, we can interpret ADTs as fixpoints of higher-order functors too.

•
data List (A : Set) : Set where

[] : List A
:: : A→ List A→ List A

is also
data List : Set→ Set where

[] : ∀{A : Set} → List A
:: : ∀{A : Set} → A→ List A→ List A

which has H F X = 1 +X × F X, so List is interpreted as µH,
i.e., as µF. λX. 1 +X × F X

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

maps for ADTs and Nested Types

• If the ADT or nested type D is defined by D = HD, where H denotes the
higher-order functor H for D, then we interpret D as µH.

• Because µH is itself a functor, and thus has a corresponding mapµH , D has a
corresponding function mapD that is just the reflection back into syntax of mapµH .

•
mapList :: (A→ B)→ List A→ List B
mapList f [] = []
mapList f (x :: xs) = (f x) :: mapList f xs

•
mapPTree :: (A→ B)→ PTree A→ PTree B
mapPTree f (pleaf x) = pleaf (f x)
mapPTree f (pnode ts) = pnode (mapPTree (f × f) ts)

•
mapBush :: (A→ B)→ Bush A→ Bush B
mapBush f bnil = bnil
mapBush f (bnode a bb) = bnode (f a) (mapBush (mapBush f) bb)

• mapD preserves the shape of a D-structure but (potentially) changes its contents.

Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.

Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.

Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.

Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.

Naturality Results for ADTs and Nested Types (I)

• Just as their interpretations as fixpoints of higher-order functors give map functions
for ADTs and nested types, these interpretations also give naturality results.

• A natural transformation η : µH → µH′ gives commuting squares: if f : X → Y ,
then

(µH)X (µH′)X

(µH)Y (µH′)Y

ηX

mapµH f mapµH′ f

ηY

• Computationally (i.e., reflecting back into syntax), we can think of natural
transformations as polymorphic functions between data types whose constructors
are interpreted as µH and µH′.

• A polymorphic function (natural transformation) between (interpretations of) data
types alters the shapes of data structures without changing their data elements.

• So natural transformations do the “opposite” of map functions, which act on data
elements without changing the shape of the data structure in which they reside.

Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.

Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.

Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.

Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.

Naturality Results for ADTs and Nested Types (II)

• The naturality square for (the interpretation of) a polymorphic function says that it
doesn’t matter in which order we apply the function and the map operations.
• If the polymorphic function flatten : ∀{A : Set} → PTree A→ List A acts like this

flatten (((a111, a112), (a121, a122)), ((a211, a212), (a221, a222))) =
(a111, a112, a121, a122, a211, a212, a221, a222)

then

PTree A List A

PTree B List B

flatten{A}

mapPTree f mapList f

flatten{B}

((a11, a12), (a21, a22)) (a11, a12, a21, a22)

((fa11, fa12), (fa21, fa22)) (fa11, fa12, fa21, fa22)

flatten{A}

mapPTree f mapList f

flatten{B}

• This can be proved as a consequence of parametricity, but it really derives from the
interpretation of ADTs and nested types as fixpoints of higher-order functors.

Summary

• Initial algebra semantics gives all of the above gives programming kit — maps,
computation rules for polymorphic functions, folds (stylized recursion operators) —
that we can use to program with, and reason about, ADTs and nested types.

• Next time we’ll introduce GADTs and their semantics, and we’ll see that this is
where things start getting trickier (but also more enlightening!)

Summary

• Initial algebra semantics gives all of the above gives programming kit — maps,
computation rules for polymorphic functions, folds (stylized recursion operators) —
that we can use to program with, and reason about, ADTs and nested types.

• Next time we’ll introduce GADTs and their semantics, and we’ll see that this is
where things start getting trickier (but also more enlightening!)

