
Indexed Induction and Coinduction, Fibrationally

Clément Fumex, Neil Ghani, and Patricia Johann
University of Strathclyde, Scotland

Abstract. This paper extends the fibrational approach to induction and
coinduction pioneered by Hermida and Jacobs, and developed by the cur-
rent authors, in two key directions. First, we present a sound coinduction
rule for any data type arising as the final coalgebra of a functor, thus re-
laxing Hermida and Jacobs’ restriction to polynomial data types. For this
we introduce the notion of a quotient category with equality (QCE), which
both abstracts the standard notion of a fibration of relations constructed
from a given fibration, and plays a role in the theory of coinduction dual
to that of a comprehension category with unit (CCU) in the theory of in-
duction. Second, we show that indexed inductive and coinductive types
also admit sound induction and coinduction rules. Indexed data types
often arise as initial algebras and final coalgebras of functors on slice
categories, so our key technical results give sufficent conditions under
which we can construct, from a CCU (QCE) U : E → B, a fibration with
base B/I that models indexing by I and is also a CCU (QCE).

1 Introduction
Iteration operators provide a uniform way to express common and naturally
occurring patterns of recursion over inductive data types. Categorically, iteration
operators arise from initial algebra semantics: the constructors of an inductive
data type are modelled as a functor F , the data type itself is modelled as the
carrier µF of the initial F -algebra in : F (µF)→ µF , and the iteration operator
fold : (FA → A) → µF → A for µF maps an F -algebra h : FA → A to the
unique F -algebra morphism from in to h. Initial algebra semantics provides a
comprehensive theory of iteration which is i) principled, in that it ensures that
programs have rigorous mathematical foundations that can be used to give them
meaning and prove their soundness; ii) expressive, in that it is applicable to all
inductive types — i.e., all types that are carriers of initial algebras — rather
than just to syntactically defined classes of data types such as polynomial ones;
and iii) sound, in that it is valid in any model — set-theoretic, domain-theoretic,
reliability, etc. — interpreting data types as carriers of initial algebras.

Final coalgebra semantics gives an equally comprehensive understanding of
coinductive types: the destructors of a coinductive data type are modelled as
a functor F , the data type itself is modelled as the carrier νF of the final F -
coalgebra out : νF → F (νF), and the coiteration operator unfold : (A→ FA)→
A → νF for νF maps an F -coalgebra k : A → FA to the unique F -coalgebra
morphism from k to out . Final coalgebra semantics thus provides a theory of
coiteration which is as principled, expressive, and sound as that for induction.

Since induction and iteration are closely linked, we might expect initial alge-
bra semantics to give a principled, expressive, and sound theory of induction as
well. However, most theories of induction for a data type µF , where F : B → B,

are sound only under significant restrictions on the category B, the functor F ,
or the property to be established. Recently a conceptual breakthrough in the
theory of induction was made by Hermida and Jacobs [6]. They show how to
lift an arbitrary functor F on a base category B of types to a functor F̂ on a
category of properties over those types. They take the premises of an induction
rule for µF to be an F̂ -algebra, and their main theorem shows that such a rule
is sound if the lifting F̂ preserves truth predicates. Hermida and Jacobs work in
a fibrational, and hence axiomatic, setting and treat any notion of property that
can be suitably fibred over B. Moreover, they place no stringent requirements on
B. Thus, they overcome two of the aforementioned limitations. But since they
give sound induction rules only for polynomial data types, the limitation on the
functors treated remains in their work. The current authors [3] subsequently re-
moved this final restriction to give sound induction rules for all inductive types
on the underlying fibration under conditions commensurate with those in [6].

In this paper, we extend the existing body of work in three key directions.
First, Hermida and Jacobs developed a fibrational theory of coinduction to com-
plement their theory of induction. But this theory, too, is sound only for polyno-
mial data types, and so does not apply to final coalgebras of some key functors,
such as the finite powerset functor. In this paper, we derive a sound fibrational
coinduction rule for every coinductive data type, i.e., for every type that is the
carrier of a final coalgebra. Second, data types arising as initial algebras of func-
tors are fairly simple. More sophisticated data types — e.g., untyped lambda
terms and red-black trees — are often modelled as inductive indexed types aris-
ing as initial algebras of functors on slice categories, presheaf categories, and
similar structures. In this paper, we derive sound induction rules for such in-
ductive indexed types. Finally, since we can derive sound induction rules for
inductive types and inductive indexed types, and sound coinduction rules for
coinductive types, we might expect to be able to derive sound coinduction rules
for coinductive indexed types, too. In this paper, we confirm that this is the case.

This rest of this paper is structured as follows. In Section 2 we recall the
fibrational approach to induction pioneered in [6] and extended in [3]. In Section 3
we extend the results of [6] to derive sound coinduction rules for all functors with
final coalgebras. We give sound induction (coinduction) rules for inductive (resp.,
coinductive) indexed types in Section 4 (resp., Section 5). Section 6 summarises
our conclusions, and discusses related work and possibilities for future work.

2 Induction in a Fibrational Setting
Fibrations support a uniform, axiomatic approach to induction and coinduction
that is widely applicable and abstracts over the specific choices of category, func-
tor, and predicate. This is advantageous because i) the semantics of data types in
languages involving recursion and other effects usually involves categories other
than Set; ii) in such circumstances, the standard set-based interpretations of
predicates are no longer germane; iii) in any setting, there can be more than one
reasonable notion of predicate; and iv) fibrations allow induction and coinduc-
tion rules for many classes of data types to be obtained by instantiation of a
single, generic theory rather than developed an ad hoc, case-by-case basis.

2.1 Fibrations in a Nutshell

We begin with fibrations. More details can be found in, e.g., [8, 13].

Definition 2.1. Let U : E → B be a functor. A morphism g : Q → P in E is
cartesian over a morphism f : X → Y in B if Ug = f and, for every g′ : Q′ → P
in E with Ug′ = fv for some v : UQ′ → X, there exists a unique h : Q′ → Q in
E such that Uh = v and gh = g′.

The cartesian morphism f§P over a morphism f with codomain UP is unique up
to isomorphism. We write f∗P for the domain of f§P , and omit the subscript P
when it can be inferred from context.

Definition 2.2. Let U : E → B be a functor. Then U is a fibration if for
every object P of E and every morphism f : X → UP in B there is a cartesian
morphism f§P : f∗P → P in E over f .

If U : E → B is a fibration, we call B the base category of U and E its total
category. Objects of E are thought of as properties, objects of B are thought of
as types, and U is thought to map each property P in E to the type UP about
which it is a property. An object P in E is said to be above its image UP under
U , and similarly for morphisms. For any object X of B, we write EX for the fibre
above X, i.e., the subcategory of E comprising objects above X and morphisms
above idX . Morphisms within a fibre are said to be vertical. If f : X → Y is a
morphism in B, then the function mapping each object P of E to f∗P extends
to a functor f∗ : EY → EX called the reindexing functor induced by f .

Example 2.3. The category Fam(Set) has as objects pairs (X,P) with X a set
and P : X → Set. We call X the domain of (X,P), and write P for (X,P)
when convenient. A morphism from P : X → Set to P ′ : X ′ → Set is a pair
(f, f∼) of functions f : X → X ′ and f∼ : ∀x : X.P x → P ′(f x). The functor
U : Fam(Set)→ Set mapping (X,P) to X is called the families fibration.

Example 2.4. The arrow category of B, denoted B→, has morphisms of B as its
objects. A morphism from f : X → Y to f ′ : X ′ → Y ′ in B→ is a pair (α1, α2)
of morphisms in B such that f ′α1 = α2f . The codomain functor cod : B→ → B
maps an object f : X → Y of B→ to the object Y of B. If B has pullbacks, then
cod is a fibration, called the codomain fibration over B. Indeed, given an object
f : X → Y in the fibre above Y and a morphism f ′ : X ′ → Y in B, the pullback
of f along f ′ gives a cartesian morphism over f ′.

We say U : E → B is an opfibration, if Uop : Eop → Bop is a fibration. Concretely:

Definition 2.5. Let U : E → B be a functor. A morphism g : P → Q in E
is opcartesian over a morphism f : X → Y in B if Ug = f and, for every
g′ : P → Q′ in E with Ug′ = vf for some v : Y → UQ′, there exists a unique
h : Q→ Q′ in E such that Uh = v and hg = g′.

As for cartesian morphisms, the opcartesian morphism fP§ over a morphism f
with codomain UP is unique up to isomorphism. We write ΣfP for the domain
of fP§ , and omit the superscript P when it can be inferred from context.

Definition 2.6. If U : E → B is a functor, then U is an opfibration if for every
object P of E and every morphism f : UP → Y in B there is an opcartesian
morphism fP§ : P → ΣfP in E over f . A functor U is a bifibration if it is
simultaneously a fibration and an opfibration.

If f : X → Y is a morphism in the base of an opfibration, then the function
mapping each object P of EX to ΣfP extends to a functor Σf : EX → EY called
the opreindexing functor induced by f . The following useful result is from [9].

Lemma 2.7. Let U : E → B be a fibration. Then U is a bifibration iff, for every
morphism f : X → Y in B, f∗ is right adjoint to Σf .

2.2 Fibrational Induction in Another Nutshell

At the heart of Hermida and Jacobs’ approach to induction is the observation
that if U : E → B is a fibration and F : B → B is a functor, then F can be
lifted to a functor F̂ : E → E and the premises of the induction rule for µF can
be taken to be an F̂ -algebra. Crucially, for this induction rule to be sound, the
lifting must be truth-preserving. These terms are defined as follows.

Definition 2.8. Let U : E → B be a fibration and F : B → B be a functor. A
lifting of F with respect to U is a functor F̂ : E → E such that UF̂ = FU . If each
fibre EX has a terminal object, and if reindexing preserves terminal objects, then
we say that U has fibred terminal objects. In this case, the map assigning to
every X in B the terminal object in EX defines a functor KU which is called the
truth functor for U and is right adjoint to U . We omit the subscript on KU when
this can be inferred. A lifting F̂ of F is called truth-preserving if KF ∼= F̂K.

The codomain fibration cod from Example 2.4, for instance, has fibred terminal
objects: the terminal object in EX is idX . A truth-preserving lifting F→ of F
with respect to cod is given by the action of F on morphisms.

Definition 2.9. A comprehension category with unit (CCU) is a fibration U :
E → B with a truth functor KU which itself has a right adjoint {−}U . In this
case, {−}U is called the comprehension functor for U .

We omit the subscript on {−}U when this can be inferred. The fibration cod is the
canonical CCU: the comprehension functor is the domain functor dom : B→ → B
mapping f : X → Y in B→ to X. Truth-preserving liftings with respect to CCUs
are used in [6] to state and prove soundness of induction rules.

Theorem 2.10. Let U : E → B be a CCU, let F : B → B be a functor with
initial algebra µF , and let F̂ be a truth-preserving lifting of F . Then the following
induction rule for F is sound:

indF : ∀(P : E). (F̂P → P)→ µF → {P}

Proof. Because F̂ is truth-preserving, the initial F̂ -algebra exists and has carrier
K(µF). Thus, for any F̂ -algebra h : F̂P → P , we have fold h : K(µF) → P .
Since K a {−}, this map in turn gives the desired map from µF to {P}.

This very elegant theorem shows that fibrations provide just the right struc-
ture to derive sound induction rules for inductive data types whose underlying
functors have truth-preserving liftings. Although Hermida and Jacobs gave such
liftings only for polynomial functors, [3] showed that every functor has a truth-
preserving lifting with respect to certain bifibrations, called Lawvere categories.

Definition 2.11. A fibration U : E → B is a Lawvere category if it is a CCU
which is also a bifibration.

If ε is the counit of the adjunction K a {−} for a CCU U , then πP = UεP defines
a natural transformation π : {P} → UP . (The domain of πP really is {P} since
UK = Id .) Moreover, π extends to a functor π : E → B→ in the obvious way.

Lemma 2.12. Let U : E → B be a Lawvere category. Then π has a left adjoint
I : B→ → E defined by I (f : X → Y) = Σf (KX).

For any functor F , the composition F̂ = IF→π : E → E defines a truth-
preserving lifting with respect to the Lawvere category U . Here, F→ is the lifting
given after Definition 2.8. If F also has an initial algebra, then Theorem 2.10
guarantees that it has a sound induction rule as well.

If B has pullbacks, the following diagram shows that we have actually given
a modular construction of a lifting with respect to a Lawvere category by fac-
torisation through the lifting for the codomain fibration:

E

U ��???????

π
++

> B→
I

kk

cod}}||||||||

B3 Coinduction
In [6], a sound fibrational coinduction rule is given for final coalgebras of polyno-
mial functors. The development is based on a fibration U , but since coinduction is
concerned with relations, a new fibration Rel(U) of relations is first constructed.

Definition 3.1. Let U : E → B be a fibration, assume B has products, and let
∆ : B → B be the diagonal functor sending an object X to X × X. Then the
fibration Rel(U) : Rel(E)→ B is obtained by the pullback of U along ∆.

That the pullback of a fibration along any functor is a fibration is well-known [10].
The process of pulling back a fibration along a functor F , called change of
base along F , is also well-known to preserve fibred terminal objects [5]. The
fibration Rel(U) therefore has a truth functor. Below we denote the pullback
of any functor F : A → B along a functor G : B′ → B by G∗F : G∗A → B′.
The objects of G∗A are pairs (X,Y) such that GX = FY , and G∗F maps the
pair (X,Y) to the object X. We write Y for (X,Y) in G∗F when convenient.
Definition 3.1 entails that the fibre of Rel(E) above X is the fibre EX×X . A
morphism from (X,Y) to (X ′, Y ′) in Rel(E) consists of a pair of morphisms
α : X → X ′ and β : Y → Y ′ such that Uβ = α × α. Finally, if U has truth
functor K, then the truth functor for Rel(U) is given by KRel(U)X = K(X×X).

In the inductive setting, truth-preserving liftings were needed. In the coin-
ductive setting, we need equality-preserving liftings, where equality is given by:

Definition 3.2. Let U : E → B be a bifibration with a truth functor and assume
B has products. The equality functor for U is the functor EqU : B → Rel(E)
mapping an object X to ΣδKRel(U)X and a morphism f : X → I to the unique
morphism above f×f induced by the naturality of δ at f and the opcartesian map
δKX§ . Here, δ : IdB → ∆ is the diagonal natural transformation with components
δX : X → X × X, and Σδ : E → Rel(E) maps an object P in EX to an object
ΣδX

P in EX×X . If EqU has a left adjoint QU , then QU is called the quotient
functor for U . We suppress the subscripts on EqU and QU when convenient.

Definition 3.3. Let U : E → B be a bifibration which has a truth functor,
assume B has products, and let F : B → B be a functor. A lifting F̌ of F with
respect to Rel(U) is called equality-preserving if Eq F ∼= F̌ Eq.

That every polynomial functor has an equality-preserving lifting is shown in [6].
Theorem 3.4 is Hermida and Jacobs’ main theorem about coinduction. Note the
duality: in the inductive, setting the truth functor K must have a right adjoint,
while in the coinductive one, the equality functor Eq must have a left adjoint.

Theorem 3.4. Let U : E → B be a fibration which has a truth functor, assume
B has products, let F : B → B be a functor with final coalgebra νF , and let F̌ be
an equality-preserving lifting of F . If Eq has a left adjoint Q, then the following
coinduction rule for F is sound:

coindF : ∀(R : Rel(E)). (R→ F̌R)→ QR→ νF

Proof. Because F̌ is equality-preserving, the final F̌ -coalgebra exists and has
carrier Eq(νF). Thus, for any F̌ -coalgebra k : R→ F̌R, we have unfold k : R→
Eq(νF). Since Q a Eq, this map in turn gives the desired map from QR to νF .

3.1 Generic Coinduction For All Final Coalgebras

The first contribution of this paper is to give a sound coinduction rule for any
functor with a final coalgebra. To do so, we show how to generate liftings that can
be instantiated to give both the truth-preserving liftings required for induction
and, by duality, the equality-preserving liftings required for coinduction.

Lemma 3.5. Consider a quotient category with equality (QCE) over B, i.e.,
a fibration U : E → B with a full and faithful functor E : B → E such that
UE = IdB and E has left adjoint Q with unit η. Define functors ρ, J , and F̌ by

ρ : E → B→ J : B→ → E F̌ : E → E
ρP = UηP J (f : X → Y) = f∗EY F̌ = J F→ ρ

Then UF̌ = FU and F̌E ∼= EF .

Proof. To prove UF̌ = FU , note that the morphisms ρP each have domain
UP , that dom F→ ρ = FU , and that UJ = dom. Together these give UF̌ =
UJF→ρ = FU . To prove F̌E ∼= EF , we first assume that i) for every X
in B, ρEX is an isomorphism in B, and ii) for every isomorphism f in B,

J f ∼= E(dom f). Then since UE = IdB, i) and ii) imply that F̌E = JF→ρE ∼=
E dom F→ρE = EFUE = EF . To discharge i), note that, since E is full and
faithful, ηE : E → EQE is Eκ for a natural transformation κ : IdE → QE, where
each κX is an isomorphism with inverse εX and ε is the counit of Q a E. Then
ρEX = UηEX = UEκX = κX , so that ρEX is indeed an isomorphism. To dis-
charge ii), let f be an isomorphism in B. Since cartesian morphisms over isomor-
phisms are isomorphisms, we have Jf = f∗(E (codf)) ∼= E (cod f) ∼= E (dom f).
Here, the first isomorphism is witnessed by f§ and the second by Ef−1.

The lifting F̌ has as its dual the lifting F̂ given in the following lemma.

Lemma 3.6. Let U : E → B be an opfibration, let K : B → E a full and faithful
functor such that UK = IdB, and let C : E → B be a right adjoint to K with
counit ε. Define functors π, I, and F̂ by

π : E → B→ I : B→ → E F̂ : E → E
πP = UεP I (f : X → Y) = ΣfKY F̂ = I F→ π

Then UF̂ = FU and F̂K ∼= KF .

Proof. By dualisation of Lemma 3.5. The setting on the left below with U an
opfibration is equivalent to the setting on the right with U a fibration.

`

EC

��
U

��

a

EopC

��
U

��
B

K

??�������

IdB

// B Bop
K

<<yyyyyyyy

IdBop

// Bop

We can instantiate Lemmas 3.5 and 3.6 to derive both the truth-preserving
lifting for all functors from [3] and an equality-preserving lifting for all functors.
The former gives the sound induction rule for all inductive types presented in [3],
and the latter gives a sound coinduction rule for all coinductive types. To obtain
the lifting for induction, let U : E → B be a Lawvere category, K be the truth
functor for U , and C be the comprehension functor for U . Since a Lawvere
category is an opfibration, Lemma 3.6 ensures that any functor F : B → B lifts
to a truth-preserving lifting F̂ : E → E . This is exactly the lifting of [3]. To obtain
the lifting for coinduction, let U : E → B be a bifibration with a truth functor
and products in B, and let E be the equality functor Eq = ΣδKRel(U) for U .
Since both KRel(U) and Σδ are full and faithful, so is Eq. Moreover, since EqX
is in the fibre of Rel(U) above X we have Rel(U)Eq = IdB. We can therefore
take E to be Eq in Lemma 3.5 provided Eq has a left adjoint Q. In this case,
every functor F : B → B has an equality-preserving lifting F̌ : Rel(E)→ Rel(E).
Thus, if F has a final coalgebra, then νF has a sound coinduction rule.

The domain functor dom : B→ → B is actually a fibration called the domain
fibration over B. No conditions on B are required. Just as cod is the canonical
CCU, dom is the canonical QCE. A QCE Rel(U) over B which is obtained by
change of base along ∆, and for which the functor E is the equality functor for
U , is called a relational QCE.

Example 3.7. We can take U to be dom : B→ → B, E to map each X in B to
idX , andQ to be cod in Lemma 3.5. Then F̌ is exactly F→, so that F→ and F̌ are
interdefinable. Thus, just as the lifting F̂ with respect to an arbitrary fibration
U satisfying the hypotheses of Lemma 3.6 can be modularly constructed from
the specific lifting F→ with respect to cod [3], so the lifting F̌ with respect to an
arbitrary fibration U satisfying the hypotheses of Lemma 3.5 can be modularly
constructed from the specific lifting F→ with respect to dom.

So dom plays a role role in the coinductive setting similar to that played by cod
in the inductive one. We think of a morphism f : X → Y in the total category
of cod as a predicate on Y whose proofs constitute X. Intuitively, f maps each
p in X to the element y in Y about which it is a proof. Similarly, we think of
a morphism f : X → Y in the total category of dom as a relation on X, the
quotient of X by which has equivalence classes comprising Y . Intuitively, f maps
each x in X to its equivalence class in that quotient.

Example 3.8. If U is the families fibration, then the fibre above X in Rel(U)
consists of functions R : X ×X → Set. We think of these as constructive rela-
tions, where R(x, x′) gives the set of proofs that x is related to x′. In Lemma 3.5
we can take U to be the families fibration, E to map each set X to the relation
eqX defined by eqX(x, x′) = 1 if x = x′ and eqX(x, x′) = 0 otherwise, and Q
to map each relation R : X ×X → Set to the quotient X/R of X by the least
equivalence relation containing R. We get this instantiation of the definition of
F̌ , for F : Set → Set, from Lemma 3.5: ρ : Rel(U) → Set→ maps a relation
R : X ×X → Set to the quotient map ρR : X → X/R, F→ maps f to Ff , and
J : Set→ → Rel(U) maps f : X → Y to the relation f̄ mapping (x, x′) to 1 if
fx = fx′ and to 0 otherwise. Thus F̌ : FA×FA→ Set is given by F̌R = FρR.

We now derive the coinduction rule, for the functor Pfin , which maps a set
to its finite powerset, with respect to the fibration of relations constructed from
the families fibration in Example 3.8. Since Pfin is not polynomial, it lies outside
the scope of [6], but it is important, since a number of canonical coalgebras are
built from it. For example, a finitely branching labelled transition system with
state space S and labels from an alphabet A is a coalgebra S →Pfin(A× S).

Example 3.9. By Example 3.8, the lifting P̌fin maps a relation R : A×A→ Set
to the relation P̌finR : PfinA×PfinA→ Set defined by P̌finR = PfinρR. Thus,
if X and Y are finite subsets of A, then (X,Y) ∈ P̌finR iff PfinρRX = PfinρRY .
Since the action of Pfin on a morphism f maps any subset of the domain of f
to its image under f , PfinρRX = PfinρRY iff (∀x : X).(∃y : Y). xRy ∧ (∀y :
Y).(∃x : X). xRy. From P̌fin we have that the resulting coinduction rule has as
its premises a P̌fin -coalgebra, i.e., a relation R : A × A → Set and a map from
R to P̌finR in Rel(U). An object of Rel(U) is a pair (X, (Y, P)) where X is a
set, (Y, P) is an object of Fam(Set), and Y = X ×X. A morphism in Rel(U)
from (X, (Y, P)) to (X ′, (Y ′, P ′)) consists of a morphism φ : X → X ′ in Set
and a morphism (ψ,ψ∼) : (Y, P)→ (Y ′, P ′) in Fam(Set) such that ψ = φ× φ.
Thus, a P̌fin -coalgebra consists of a function α : A → PfinA together with a

function α∼ : (∀a, a′ : A). aRa′ → (αa) P̌finR (αa′). If we regard α : A→PfinA
as a transition function, i.e., if we define a→ b iff b ∈ αa, then α∼ captures the
condition that R is a bisimulation over α. The coinduction rule thus asserts that
any two bisimilar states have the same interpretation in the final coalgebra.

4 Indexed Induction
Data types arising as initial algebras and final coalgebras on traditional semantic
categories such as Set and ωcpo⊥ are of limited expressivity. More sophisticated
data types arise as initial algebras of functors on their indexed versions. To
build intuition about the resulting inductive indexed types, first consider the
inductive type ListX of lists of X. It is clear that the definition of ListX does
not require an understanding of ListY for for any Y 6= X. Since, each type ListX
is, in isolation, inductive, List can be considered a family of inductive types. By
contrast, for each n in Nat, let Finn be the data type of n-element sets, and
consider the inductive definition of the Nat-indexed type Lam : Nat → Set of
untyped λ-terms up to α-equivalence with free variables in Finn given by

i : Finn
Var i : Lamn

f : Lamn a : Lamn
App f a : Lamn

b : Lam (n+ 1)
Abs b : Lamn

Unlike ListX, the type Lamn cannot be defined in isolation using only the ele-
ments of Lamn that have already been constructed. Indeed, elements of Lam (n+
1) are needed to construct elements of Lamn so that, in effect, all of the types
Lamn must be inductively constructed simultaneously. The indexed type Lam is
thus an inductive family of types, rather than a family of inductive types.

There is considerable interest in inductive and coinductive indexed types. If
types are interpreted in a category B, and if I is a set of indices considered as
a discrete category, then an inductive I-indexed type can be modelled by the
initial algebra of a functor on the functor category I → B. Alternatively, indices
can be modelled by objects of B, and inductive I-indexed types can be modelled
by initial algebras of functors on slice categories B/I. Coinductive indexed types
can similarly be modelled by final colagebras of functors on slice categories.

Initial algebra semantics for inductive indexed types has been developed ex-
tensively [2, 11]. Pleasingly, no fundamentally new insights were required: the
standard initial algebra semantics needed only to be instantiated to categories
such as B/I. By contrast, the theory of induction for inductive indexed types has
received comparatively little attention. The second contribution of this paper is
to use our fibrational framework to derive sound induction rules for such types
by similarly instantiating initial algebra semantics to appropriate categories. The
key technical question to be solved turns out to be: given a Lawvere category of
properties fibred over types, can we construct a new Lawvere category fibred over
indexed types from which induction rules for the indexed types can be derived?
To answer it, we make the simplifying assumption that the inductive indexed
types of interest arise as initial algebras of functors over slice categories, i.e., of
functors F : B/I → B/I, where I is an object of B. Let U/I denote the Law-
vere category to be constructed. We conjecture that the total category of U/I

should be a slice category of E , and so make the canonical choice to slice over
KI, where K is the truth functor for U . We then define U/I : E/KI → B/I by
U/I (f : P → KI) = Uf : UP → I. Here, cod (Uf) really is I because UK = Id .

We first show that U/I is indeed a bifibration. We give a concrete proof before
indicating how the same result can be derived from a more abstract treatment.

Lemma 4.1. If U : E → B is a fibration (bifibration) and I is an object of B,
then U/I is a fibration (resp., bifibration).

Proof. Let α : Y → I and β : X → I be objects of B/I, and let φ : Y → X be a
morphism in B/I from α to β, i.e., be such that α = βφ. First, let f : P → KI

be an object of E/KI such that (U/I)f = Uf = β, and let φ§P : φ∗P → P be the
cartesian morphism in E over φ with respect to U . Then φ§P is a morphism in
E/KI with domain fφ§P and codomain f , and it is cartesian over φ with respect
to U/I. Thus, U/I is a fibration if U is. Now, let g : Q → KI be an object of
E/KI such that (U/I)g = Ug = α, and let φQ§ : Q → ΣφQ be the opcartesian
morphism in E over φ with respect to U . Since α = βφ, the opcartesianness of
φQ§ ensures that there is a unique map k : ΣφQ → KI in E above β such that
g = kφQ§ . Then φ

Q
§ is a morphism in E/KI with domain g and codomain k, and

it is opcartesian over φ with respect to U/I. Thus, U/I is an opfibration if U is.
Combining these results gives that if U is a bifibration then so is U/I.

There is an alternative characterisation of E/KI which both clarifies the
conceptual basis of our treatment of indexed induction and simplifies our calcu-
lations. The next lemma is the key observation underlying this characterisation.

Lemma 4.2. Let U : E → B be a fibration with truth functor K, let I be an
object of B, and let α : X → I. Then (E/KI)α ∼= EX .

Proof. One half of the isomorphism maps the object f : P → KI of (E/KI)α
to P . For the other half, note that since truth functors map objects to terminal
objects, and since reindexing preserves terminal objects, we have KX ∼= α∗KI.
Thus, for any object Q above X, we get a morphism from Q to KI by composing
α§KI and the unique morphism ! from Q to KX. Since ! is vertical and α§KI is
above α, this composition is above α. Thus each objectQ in EX maps to an object
of (E/KI)α. It is routine to verify that these maps constitute an isomorphism.

By Lemma 4.2 we may identify objects (morphisms) of (E/KI)α and objects
(resp., morphisms) of EX . This gives our abstract characterisation of U/I:

Lemma 4.3. Let U : E → B be a fibration and I be an object of B. Then U/I
can be obtained by change of base by pulling U back along dom : B/I → B.

Proof. As noted in Section 3, the pullback of a fibration along a functor is a
fibration. The objects (morphisms) of the fibre above α : X → I of the pullback
of U along dom are the objects (resp., morphisms) of EX . By Lemma 4.2, the
pullback of U along dom is therefore U/I.

As observed in Section 3, pulling back a fibration along a functor preserves fi-
bred terminal objects, so U/I has fibred terminal objects if U does by Lemma 4.3.
Concretely, the truth functor KU/I : B/I → E/KI maps an object f : X → I
to Kf : KX → KI. To see that U/I is a Lawvere category if U is, we thus need
to show that KU/I has a right adjoint. For this, we use an abstract theorem due
to Hermida [4] to transport adjunctions to pullbacks along fibrations.

Lemma 4.4. Let F a G : A → B be an adjunction with counit ε, and let
U : E → B be a fibration. Then the functor U∗F : U∗A → E has a right adjoint
GU : E → U∗A whose action maps each object E to the object (ε∗UEE,GUE).

Lemma 4.5. Change of base along a fibration preserves CCUs, i.e., if U : E →
B is a CCU and U ′ : E ′ → B is a fibration, then the pullback U ′∗U is a CCU.

Proof. We already have that U ′∗U is a fibration with fibred terminal objects. To
see that KU ′∗U has a right adjoint, consider the pullback of U∗U ′ and KU . This
pullback is given by E ′, KU ′∗U : E ′ → U ′∗E , and U ′ : E ′ → B. Note that U∗U ′
is a fibration since it is obtained by pulling U ′ back along U . Lemma 4.4 then
ensures that, since KU has a right adjoint, so does KU ′∗U . Thus U ′∗U is a CCU.

When U : E → B, I is an object of B, and U ′ is dom : B/I → B, the
comprehension functor for U ′∗U — i.e., for U/I — maps an object P in EX
above α : X → I to απP : {P} → I. Combining Lemmas 4.1 and 4.5 and the
fact that Uop is a fibration if U is an opfibration, we have

Lemma 4.6. Let U : E → B be a Lawvere category and U ′ : E ′ → B be a
fibration. Then U ′∗U is a Lawvere category.

Thus, if F is a functor on E ′ with initial algebra µF , then Theorem 2.10 guaran-
tees the existence of a sound induction rule for µF . We use this observation to
derive an induction rule for the indexed containers of Morris and Altenkirch [11].

Example 4.7. If I is a set, then the category of I-indexed sets is the fibre Fam(Set)I .
An I-indexed set is thus a function X : I → Set, and a morphism h from X to
X ′, written h : X →I X

′, is a function of type (Πi : I). Xi → X ′i. Morris and
Altenkirch denote this category I → Set and define an I-indexed container to
be a pair (S, P) with S : I → Set and P : (Πi : I). Si → I → Set. An I-indexed
container defines a functor [S, P] : (I → Set) → I → Set by [S, P]Xi = (Σs :
Si). P i s→I X. Thus, if t : [S, P]X i, then t is of the form (s, f), with projections
ρ0 and ρ1 defined by ρ0 t = s and ρ1 t = f . The action of [S, P] on a morphism
g : X →I Y maps a pair (s, f) to (s, gf). The initial algebra of [S, P] is denoted
in : [S, P]WS,P →I WS,P . Since I → Set is equivalent to Set/I, we can use the
results of this section to extend those of [11] by deriving an induction rule for
WS,P . A predicate over an I-indexed set X is a function Q : (Πi : I). Xi→ Set.
To simplify notation, this is written Q : X →I Set. The lifting [̂S, P] of [S, P]
maps each Q : X →I Set to the predicate [̂S, P]Q : [S, P]X →I Set defined
by [̂S, P]Qi (s, f) = (Πj : I). (Πp :P i s j). Q j (f j p). Altogether, this gives the
following induction rule for establishing a predicate Q : WS,P →I Set:

(Πi :I). (Π(s, f) : [S, P]WS,P i). ((Πj :I). (Πp :P i s j). Q j(f j p)→ Qi(in i (s, f))))
→ (Πi :I). (Πt :WS,P i). Q i t

5 Indexed Coinduction

We now present our third contribution: we derive coinduction rules for coinduc-
tive indexed types. Examples of such types are infinitary versions of inductive
indexed types, such as infinitary untyped lambda terms and the interaction struc-
tures of Hancock and Hyvernat [7]. If U : E → B supports coinduction for the
final coalgebra of any functor on B having one, and if U ′ : E ′ → B gives a change
of base to an indexed notion of data described by E ′, then is there a fibration
over E ′ supporting indexed coinduction for the final coalgebra of any functor on
E ′ having one. However, the details in the coinductive setting are much more
involved than in the inductive one, here we present only the following simpler
result, showing that for any relational QCE over a base category B and object
I of B, change of base along dom : B/I → B yields a relational QCE over B/I.

If B has products and U : E → B is a bifibration with truth functor K, then
the equality functor Eq for U is given by Eq = ΣδK. Let Rel(U) : Rel(E)→ B
be a QCE, i.e., let Eq have a left adjoint Q. To define a relational QCE over B/I
we must first see that B/I has products. But the product of f and g in B/I is
determined by their pullback: ifW , j : W → Z, and i : W → X give the pullback
of f and g, then their product in B/I is the morphism fi or, equivalently, gj.
Below, we write f2 for the product of f with itself in B/I and XfX for the
domain of f2. Then, if B has pullbacks, we can construct the relation fibration
Rel(U/I) : Rel(E/KI) → B/I from the pullback of U/I along the product
functor ∆/I : B/I → B/I mapping f to f2. Concretely, an object of Rel(E/KI)
above f : X → I is an object of E/KI above f2 with respect to U/I. This is, in
turn, equivalent to an object of E above XfX with respect to U .

5.1 The Equality Functor for U/I

If U is a bifibration with a truth functor then, for any object I of B, U/I is as
well, and so U/I has an equality functor EqU/I . To define this functor concretely,
note that the component of the diagonal natural transformation δ/I : Id→ ∆/I
at f : X → I is given by the diagram on the left. Thus, EqU/I maps an object
f : X → I of B/I to the unique morphism above f2 in the diagram on the right
induced by the opcartesian map m above (δ/I)f :

X

id

##

(δ/I)f

""

id

��
XfX

i

��

j //
_� X

f

��

KI

X
f

// I KX

Kf

99sssssssssss
m

// Σ(δ/I)f
KX

EqU/If

OO

5.2 The Quotient Functor for U/I

Whereas defining the equality functor for U/I was straightforward, defining its
quotient functor is actually tricky. We have not (yet!) found any abstract fibra-
tional results to deliver it, so we give a concrete construction. For each object I
of B, we define another fibration, denoted Rel(U)/I : Rel(E)/Eq I → B/I, where
Eq : B → Rel(E) is the equality functor for U . The objects of Rel(E)/Eq I above
f : X → I are morphisms α : P → Eq I for some object P of Rel(E) such that
Uα = ∆f . Our first result identifies conditions under which Rel(U)/I is a QCE.

Lemma 5.1. Let B have pullbacks, let I be an object of B, and let Rel(U) :
Rel(E)→ B be a relational QCE. Then Rel(U)/I is a QCE.

Proof. Let Eq : B → Rel(E) and Q : Rel(E) → B be the equality and quotient
functors for U , respectively. We construct a full and faithful functor E′ : B/I →
Rel(E)/Eq I such that (Rel(U)/I)E′ = IdB/I and a left adjoint Q′ for E′ as
follows. Take E′ to be Eq. Then E′ is full and faithful since Eq is. Moreover, for
any f : X → I, Definition 3.2 ensures that Eq f is above f×f with respect to U ,
so (Rel(U)/I)E′f = f , and thus (Rel(U)/I)E′ = IdB/I . Finally, we define Q′
to map each object α : P → Eq I of Rel(E)/Eq I to its transpose α′ : QP → I
under the adjunction Q a Eq. That Q′ a E′ follows directly from Q a Eq.

We can now define the quotient functor for Rel(U/I) using the functor Q′
from the proof of Lemma 5.1. The key step is to define an adjunction τ a σ so
that the diagram below commutes. Then if E′ and Q′ are the functors witnessing
the fact that Rel(U)/I is a QCE, the compositions σE′ and Q′τ give equality
and quotient functors for Rel(U/I).

Rel(E/KI)

Rel(U/I) %%KKKKKKKKKK

τ --
⊥ Rel(E)/E I
σ

mm

Rel(U)/Iyyssssssssss

B/I

To define τ and σ, let f : X → I, let i and j be the projections for the
pullback square defining XfX. The universal property of the product X × X
ensures the existence of a morphism v : XfX → X × X such that π1v = i
and π2v = j. By the universal property of the pullback of f along itself, v is a
monomorphism; we will use this in the proof of Lemma 5.3. From the diagram
on the left below, we have that δX = v (δ/I)f , which also gives the diagram on
the right:

X

id

��

(δ/I)f
��

δX

��

id

��

XfX

f2

((

v

��

XfX

v
��

X

(δ/I)fbbEEEEE

f
��

δX

// X×X
f×f

��

X X×X
π1

oo
π2

// X I
δI

// I×I

We use the right diagram and the opcartesianness of vA§ to define the functor
τ . First recall that, if R : A → KI is an object of Rel(E/KI) above f : X → I

with respect to Rel(U/I), then Rel(U/I)R = (U/I)R = UR = f2. The following
diagram then defines the morphism h above f × f in E to which τ maps R:

A
vA
§ //

R

��

ΣvA

h

��
KI

(δI)KI
§

// Eq I

So, assuming U satisfies the Beck-Chevalley condition [8], this all gives:

Definition 5.2. The functors τ and σ are given by:

τ : Rel(E/KI)→ Rel(E)/Eq I σ : Rel(E)/Eq I → Rel(E/KI)
τ(R : A→ KI) = h σ(S : B → Eq I) = v∗B

Lemma 5.3. τ is a full and faithful left adjoint to σ.

Proof. We exhibit the unit η of the adjunction τ a σ and show that it is an
isomorphism. Because v is a monomorphism, the unit η′ of the adjunction Σv a
v∗ is an isomorphism. Moreover, since objects of Rel(E/KI) above f : X → I in
the fibration Rel(U/I) can be seen as objects of E aboveXfX in U , η must assign
to every object R above XfX in U a morphism from R to v∗ΣvA. We define
η = η′. The universality of η follows from the fact that η′ is an isomorphism.

Recall that our candidate for the quotient functor for Rel(U/I) is Q′τ . To
see that Q′τ a EqU/I , note that Q′τ a σE′, so we need only verify that EqU/I is
σE′. It is routine to check that τEqU/I = E′, from which EqU/I = σE′ follows.

We now use the results of this section to give a coinduction rule for final
coalgebras of indexed containers that is dual to the induction rule of Example 4.7.

Example 5.4. Let (S, P) be an I-indexed container with final coalgebra out :
MS,P →I [S, P]MS,P . A relation over an I-indexed set X : I → Set is an
I-indexed family of relations Ri on Xi. The relational lifting of [S, P] maps
a relation R over an I-indexed set X to the relation R′ over the I-indexed set
[S, P]X that relates (s, f) ∈ [S, P]Xi and (s′, f ′) ∈ [S, P]Xi iff s = s′ and, for all
j : I and p :P i s j, f j p is related in Rj to f ′ j p. This gives the following notion
of bisimulation for [S, P] coalgebras k : X →I [S, P]X: if x, x′ ∈ Xi, then x ∼i x′
iff ρ0(kx) = ρ0(kx′) and, for all j : I and p :P i (π0(kx)) j, ρ1(fx)p ∼j ρ1(fx′)p.

6 Conclusions, Related Work, and Future Work
In this paper, we have extended the fibrational approach to induction and coin-
duction pioneered by Hermida and Jacobs, and further developed by the current
authors, in three key directions: We gave sound coinduction rules for all functors
having final coalgebras provided the fibration interpreting them is a QCE, and
we gave similarly sound generic induction and coinduction rules for all functors
over slice categories having initial algebras and final coalgebras.

The work of Hermida and Jacobs is most closely related to ours, but there
is, of course, a large body of work on induction and coinduction in a broader

setting. In dependent type theory, for example, data types are usually presented
with elimination rules that are exactly induction rules. Along these lines, [12]
has heavily influenced the development of induction in Coq. Another important
strand of related work concerns inductive families and their induction rules [2].
On the coinductive side, papers such as [1, 14, 15] have had immense impact in
bringing bisimulation into the mainstream of theoretical computer science.

There are several evident directions for future work. The most immediate is
showing that change of base along a fibration preserves QCEs, just as it does
CCUs; this would yield a compact derivation of the results in Section 5 analogous
to that in Section 4. We also expect to exploit the predictive power of our theory
to provide induction and coinduction rules for data types whose rules are not
discernible by sheer intuition. Although we may be able to intuit appropriate
rules for simple data types, for more advanced ones — such as inductive recur-
sive types — our intuition may break down; in such circumstances our generic
fibrational approach should provide rules whose use is justified by their sound-
ness proofs. Finally, we would like to see our induction and coinduction rules for
advanced data types incorporated into implementations such as Agda and Coq.

References
1. P. Aczel and P. Mendler. A Final Coalgebra Theorem. Proceedings, Category The-

ory and Computer Science, pp. 357–365, 1989.
2. P. Dybjer. Inductive Families. Formal Aspects of Computing 6(4), pp. 440–465,

1994.
3. N. Ghani, P. Johann, and C. Fumex. Fibrational Induction Rules for Initial Alge-

bras. Proceedings, Computer Science Logic, pp. 336–350, 2010.
4. C. Hermida. Some properties of Fib as a Fibred 2-Category. Journal of Pure and

Applied Algebra 134(1), pp. 83–109, 1993.
5. C. Hermida. Fibrations, Logical Predicates and Related Topics. Dissertation, Uni-

versity of Edinburgh, 1993.
6. C. Hermida and B. Jacobs. Structural Induction and Coinduction in a Fibrational

Setting. Information and Computation 145, pp. 107–152, 1998.
7. P. G. Hancock and P. Hyvernat. Programming Interfaces and Basic Topology.

Annals of Pure and Applied Logic 137(1-3), pp. 189–239, 2006.
8. B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Founda-

tions of Mathematics, Volume 141, 1999.
9. B. Jacobs. Comprehension Categories and the Semantics of Type Dependency.

Theoretical Computer Science 107, pp. 169–207, 1993.
10. B. Jacobs. Quotients in Simple Type Theory. Mathematics Institute, 1994.
11. P. Morris and T. Altenkirch. Indexed Containers. Proceedings, Logic in Computer

Science, pp. 277–285, 2009.
12. Frank Pfenning and C. Paulin-Mohring. Inductively Defined Types in the Calculus

of Constructions. Proceedings, Mathematical Foundations of Programming Seman-
tics, pp. 209–228, 1989.

13. D. Pavlovič. Predicates and Fibrations. Dissertation, University of Utrecht, 1990.
14. J. Rutten. Universal Coalgebra: A Theory of Systems. Theoretial Computer Science

249(1), pp. 3–80, 2000.
15. D. Turi and J. Rutten. On the Foundations of Final Coalgebra Semantics. Mathe-

matical Structures in Computer Science 8(5), pp. 481–540, 1998.

