Problem Set 4 Guidelines

Problem 1:  3.2 #46

Problem 2:  2.8 #38

Problem 3:  5.1 #21 (all parts)

Problem 4:  Rotation matrices in R2   Recall that the general rotation matrix which rotates vectors in the counterclockwise direction by angle theta is given by
  Part A:   Apply the Eigenvalues(M); command. Notice that there are real eigenvalues for certain values of theta only. What are these values of theta and what eigenvalues do they produce? (Recall that I = the square root of negative one does not exist as a real number and that cos(theta) is less than or equal to 1 always.)
  Part B: For each real eigenvalue, find a basis for the corresponding eigenspace.
  Part C:   Use only a geometric explanation to explain why most rotation matrices have no eigenvalues or eigenvectors (ie scaling along the same line through the origin). Address the definition of eigenvalues/eigenvectors in your response as well as how the rotation angle connects to the definition in this case.

Problem 5:  5.6 # 5 and 6

I'll be posting responses to select ASULearn messages I receive from the class in the forum on ASULearn - so ask/look on ASULearn for hints and suggestions.
A Review of Various Maple Commands:
> with(LinearAlgebra): with(plots):
> A:=Matrix([[-1,2,1,-1],[2,4,-7,-8],[4,7,-3,3]]);
> ReducedRowEchelonForm(A);
> GaussianElimination(A);
(only for augmented matrices with unknown variables like k or a, b, c in the augmented matrix)
> ConditionNumber(A);
(only for square matrices)
> Determinant(A);
> Eigenvalues(A);
> Eigenvectors(A);
> evalf(Eigenvectors(A));
> Vector([1,2,3]);
> B:=MatrixInverse(A);
> A.B;
> A+B;
> B-A;
> 3*A;
> A^3;
> evalf(M)
> spacecurve({[4*t,7*t,3*t,t=0..1],[-1*t,2*t,6*t,t=0..1]},color=red, thickness=2);
plot vectors as line segments in R3 (columns of matrices) to show whether the the columns are in the same plane, etc.
> implicitplot({2*x+4*y-2,5*x-3*y-1}, x=-1..1, y=-1..1);
> implicitplot3d({x+2*y+3*z-3,2*x-y-4*z-1,x+y+z-2},x=-4..4,y=-4..4,z=-4..4);
plot equations of planes in R^3 (rows of augmented matrices) to look at the geometry of the intersection of the rows (ie 3 planes intersect in a point, a line, a plane, or no common points)