**Problem 1:**
3.2 #46

**Problem 2:**
2.8 #38

**Problem 3:**
5.1 #21 (all parts)

**Problem 4:**
**Rotation matrices in R**^{2}
Recall that the general rotation matrix which rotates vectors in the
counterclockwise direction by angle theta is given by

M:=Matrix([[cos(theta),-sin(theta)],[sin(theta),cos(theta)]]);

**Part A:** Apply the Eigenvalues(M); command. Notice
that there are real eigenvalues for certain values of theta only.
What are these values of theta and what eigenvalues do they produce?
(Recall that I = the square root of negative one
does not exist as a real number and that
cos(theta) is less than or equal to 1 always.)

**Part B:** For each real eigenvalue, find
a basis for the corresponding eigenspace.

**Part C:** Use only a geometric explanation
to explain why most rotation matrices have no eigenvalues or eigenvectors
(ie scaling along the same line through the origin). Address the
definition of eigenvalues/eigenvectors in your response as well as
how the rotation angle connects to the definition in this case.

**Problem 5:**
5.6 # 5 and 6

I'll be posting responses to select ASULearn messages I receive from the
class in the forum on ASULearn -
so ask/look on ASULearn for hints and suggestions.

A Review of Various Maple Commands:

**
> with(LinearAlgebra): with(plots):
**

> A:=Matrix([[-1,2,1,-1],[2,4,-7,-8],[4,7,-3,3]]);

> ReducedRowEchelonForm(A);

> GaussianElimination(A); (only for augmented
matrices with unknown variables like
k or a, b, c in the augmented matrix)**
**

> ConditionNumber(A); (only for square matrices)**
**

> Determinant(A);

> Eigenvalues(A);

> Eigenvectors(A);

> evalf(Eigenvectors(A));

> Vector([1,2,3]);

> B:=MatrixInverse(A);

> A.B;

> A+B;

> B-A;

> 3*A;

> A^3;

> evalf(M)

> spacecurve({[4*t,7*t,3*t,t=0..1],[-1*t,2*t,6*t,t=0..1]},color=red, thickness=2); plot vectors as line segments in R^{3}
(columns of matrices) to show whether the the columns are in the same plane,
etc.
**
**

> implicitplot({2*x+4*y-2,5*x-3*y-1}, x=-1..1, y=-1..1);

> implicitplot3d({x+2*y+3*z-3,2*x-y-4*z-1,x+y+z-2},x=-4..4,y=-4..4,z=-4..4);
plot equations of planes in R^3 (rows of augmented matrices) to look
at the geometry of the intersection of the rows (ie 3 planes intersect in
a point, a line, a plane, or no common points)